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1. INTRODUCTION

Linear regression models are widely used in statistical analysis of

experimental and observational data. Usually the linearity of the model is

merely an assumption and cannot be taken for granted. In some planned experi-

ments, repeated measurements on the dependent variable Y can be taken while

the independent variable X is held fixed. In such cases standard analysis-

of-variance technique can be employed to generate a test for linearity. In

many applications, however, the independent variable is observed simultane-

ously with Y. That is to say, X, as well as Y, is a random variable. Under

such circumstance the usual method for testing linearity cannot apply.

Tff-this paper we shall study this problem in the large-sample context.

We propose a method to test the linearity hypothesis based on a grouping of

the data. The critical value of test-statistic is determined so that the

test hasa prescribed lever of significance d asymptotically as the sample

size tends to infinity. The consistency of the test is established, and

the asymptotic power is calculated when the distance (in some sense) between

the true regression function and the space of linear functions tends to zero

in some specific rate.
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2. ASSUMPTIONS OF THE MODEL

In this section we shall give a detailed account of our assumptions.

We shall adhere to these assumptions in the sequel.

A basic assumption is that the conditional distribution of Y given

= x has a form (F(y - m(x)), i.e., P(Y < yll = x) = F(y - m(x)), where

F is a fixed distribution function. We do not assume F to be known. Let

1,Y1), ..., (T n, Yn) be iid. observations of (.,Y). Then, under this

assumption, we can give Yi a more convenient expression, as follows:

Yi = m(- i ) + ei, i = 1, ... , n (1)

where e1 , e2 , ... are iid. with common distribution function F, and

"" . n' e1  ... en are mutually independent. Also, EeI = 0. We

further assume that

10. The moment generating function of e1 exists in some neighborhood

of zero.

20. The variance a2 of el (whose existence follows from 10) is positive.

Denote by p the probability distribution of X. We assume that

30. E117I 2 < -, and COVCX) > 0 (1I-I is the Eculidian norm).

40. p has no singular component, and if u has an absolute component

with density f, then for sufficiently small a > 0 there exists an open set

Ga, such that

IGa A{x: f(x) > a}l = 0

where JAI denotes the Lebesgue measure of A, and 6 is symmetric differ-

ence. This condition is a rather weak one since it is satisfied by such f

whose discontinuity points all lie in a closed set with Lebesgue measure zero.

For brevity, in the sequel we shall use "model (1)" in the sense that

all of the above assumptions are met.

, -, -..-.. , .. , . .... ... . . ...,.S., ..- ..-... -. .. .. •..-,,., .-... . .. '...-,-..-5, -.- .. -. '5.-.- .-.



4

3. CONSTRUCTION OF THE TEST

Choose two numbers e1 and c2' with the condition

0 < e1 < S 2 < 1/3. (2)

Some further restrictions on the choice of c1, E2 will be needed, which

will be stated in Section 5.

Put 9n = n- 2 Decompose Rd into a set J* of supercube havingn n

the form

{(x(I )  ..., x (d): aikn _< x M < (ai +1), i = 1, ... , d}, (3)

a .= 0, +1, +2, i = 1, ... , d.

For J 6 J*, use #(J) to denote the number of elements in the setn

J{XI, ... ,_n}. Write
in"

{J: J 6 J* #(J) > n2/3+c1  = {Jnl' J "'" J (4)n ' - Jn ' nc n (4
n

Obviously,

1/3-E 1
cn < n (5)

Further, let

Jni n {-1 ."" nl = (-ni( I ) ' -ni(2) " -hihi )

We have by definition

(2/3)+e 1
n. >n , i = , ..., c. (6)

We shall write Yni(J) and eni(J) for Yk and ek, when Xni(j) =k"

Denote by Xni the arithmetic mean of ni (j), j 1, ... , n. Similarly

S%
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we define Yni and eni.

If the null hypothesis HO:

m(x) + 'x (7)

is true, we have

Yni=c + X' B  + e i= .. c (8)ni -nl ni' '"'n

where Eeni = 0. Var eni = a2/ni, .and enl, ... , enc are independent.
n

Applying weighted least squares method to this model with weight matrix

W(n) = diag(nl, n2, ... , n )
n

one obtains the weighted residual sum of squares as

RS'n = Yn)W(n)Y(n) - Yin)W(R) -(R)(lin)W(R)-X(R))-I7!R)W(R)Y(R) (9

where

-Xn = ( n1  'Xn )' Y, Yn,., ', )'

1(n) - "nl'" nc ' (n) (Yni' ncn ' e(n) = n1'",encn

nn  nn  cn
i n i n ni ni

~~~ nX Y=n Y /N,
n ni /Nn n i1 ni n' en =Lnieni/N

and

Nn = c1 + n2 + ... + ncn* (10)

The definition of RSS is meaningful even when (7) is false. In case
n

that (7) is true, we have

(nn e n )e-nW) (n)W(n)e(

RSS(n ) =en)W(n ) en)W(n)_X(n)(n) (n)!(n)j l-Xn) n) (1l)
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RSSn tends to be large when the null hypothesis H0 is not true, and

thi; suggests a test for H0. Reject H0 when

RSS > C (12)
n n

2 2
and accept H0 when (12) does nut hold. n is a suitable estimate of a

to be defined in Section 5. In order to determine C in (12), we must study

the asymptotic distribution of the statistic RSSn/a2 under H0. This will

be done in the following two sections.

"4

P.
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4. ASYMPTOTIC DISTRIBUTION OF THE RESIDUAL SUM OF SQUARES

The purpose of this section is to prove the following:

THEOREM 1. Let P* = P*(X X 2 be the conditional distribution

given {X 1  X2' ""}" Under model (1) and when H0 is true, there exists

random variable E n whose conditional distribution given {1 X .
"'} is

2
Xc -d' such that with probability one we have a'n -d

RSS/a _C 0, as n . (13)

Proof: First we proceed to show that

In)W(n)'(n)In - COV(7), a.s., as n . (14)

For this purpose, denote the atoms of _ by al, a2, ..., and put pi P

(= a.) > 0, i 1, 2, ... Given n > 0, find N so that PN+I + PN+2 +

< n. Find b > 0 small enough, such that

fdx n. (15)
{x=f(x)<b)

According to condition 40, there exist an open set G, such that

IGA{x: f(x) > b}[ = 0.

Choose a bounded closed set F0 cG, so that fdx < n. Denote by ci the
fG-F

distance between F0 and the boundary of G, then j > 0.

By the inequality of Bennett (1962), we have

P(I#(J)/n - (J)I > c) < 2exp(- nE2/(2 + E)) (16)

P(I#(J)/n - (J)l >  ci'(J)) < 2exp(- cnii(J)) (17)

where e > 0, and c > 0 is a constant depending solely on c. Define two
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subsets of J*
n

H1 = {J: J e J*, a. 6 J for some i < N}
n'

H2  {J: J e J* J F # 41n' 0

and an event
2/3+F I

En = {#(J) > n , for every J e HU H2  .

Since the number of J's contained in HIU H2 is of the order O(n
I  ) and

-I/3+cl1I

p(J) >__ bn for J e HInH 2 and n sufficiently large, it is easy to

prove by using (16) that

cn /3

P(En) > 1 O(ecn ) (18)n

where c does not depend on n.

Now define the event
-1/3+E:i/2

Fn = {min{1i(I ni): i = 1, ... , c n } < n ' }

We are going to prove that for any given positive integer k, it is true

that

P(F n) = kn). (19)

For this purpose, define Dn = {(x(i ) , ..., x (d): x(i)i < n(k+1 )/2

i = 1, ..., d}. By condition 40, it is readily shown

P(Xi e D n' i = 1, ..., n) > 1 - O(n- k).

Define
-1/3+c1/2

H3  {J: 3 e J*, JlD n  (J) < n 1  }
3 n n

There are at most n (k+l)d elements in H3. Using (16), for n sufficiently

large, we have

P(F) < Cn- k  n2/3+E )

cn-k + n(k+1)doe ) : k) (20)

< .-.. -+ n.. .-.-.(..
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which proves (19)

For each t e Rd, denote by t(u) the u-th coordinate of t. Write

EX(u) = mu. For each J e J*, choose a point tj e J, and if J is one ofIncn

In1, ... , then choose t = Xni. Put Jn J*n- {In i = 1, ... Cn

we have

Cn ni I K(u)t
Cn ni I - 1 (u) t V) (J) M I - - - ( )j' J

n -ni " m nnjeji + n- -ni J
i=1 n n

()C n n t(u)(

- Je J ci n.)(~I+~

-ej t M MuMI + I 1 (n AiInM -ni + 1jeGtJn M

_ LI + L2 + L3 " (21)

Since EIII < W, L1 + 0 as n + -. As for L3, when event En occurs, we have

jS 3nJ  F0  (aN+1, ... aN+ 2} and

n J
urn supil t~u)lj(J), I E(j17(u)11( Fc Ula a .. (2

c ..} 0 N+1' LN+ 2 i n

By definition of N and FO, we have P(X e FO U{aN+1 , aN+ 2, < 3n. Letting

n > 0 small enough, the right hand side of (22) can be made small enough.

This, combining with (18), shows that

lim L3 = 0, a.s. (23)

Finally we turn to L2. When event Fn occurs, we have (Ini ) > n

Also, by (17) we have

P{#(I ni)/n - (I *)1> 1 E1(I n) for at least one i such that

-1/3+F 1/2 -1/3+E1/2 -2
(Ini) >n < n.2exp(- cnn ) = O(n" 2 (24)
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This, combining with (19) (choosing k = 2 in (19), shows that with proba-

bility one Ini/n - P(Ini) ( i = 1, ..., cn, for n sufficiently

large. In this event we have
C

L2 < C i - n i j(Ini) < I u)l(J) EEIx(uI .2 i I1 ni n-jj~t

Therefore

lim L2 = 0, a.s.

and we have proved that

Cn n.
lim I -!-) - mu, u = 1, ... , d, a.s. (25)
n-~i=1

Similar arguments shows that

Cn n. E
lim Z - -- Xni - _ , u,v = 1, ... , d, a.s. (26)
*- i=1

Now (14) follows from (25), (26).

According to an important theorem in the theory of strong approximation

proved by Koml6s and others (1975), one can find a random variable

Zni " N(0,a 2 /ni), Zni ... , Nnc independent, and
n

P(leni-Z nil > (log n) 2/ni) < K exp(-X(log n) 2), I l,*..cn (27)

where K > 0, X > 0 are constants not depending on n, i. Put

Vni= eni - ni' i = 1,.00,cn

c c

ni = Vni W i 1ni' ni - Nni i n
n n i=1V~) ( **~~Vc)', Z(n) = .Z ,Znc)'

V(n) (Vni nc n ni'""

n Zin)W(n)Z(n) - L n)W(n)-(n)(Tin)W(n)-(n)) '-(n)W(n)Z(n) (28)

- . ".%. 6* . _%. ... '-
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Then RSS n defined by (19) can be written as

RSSn = +V' + 2V+ Z(
(n)W(n)V(n) +Wn)W(n) (n)

- (1  )(X( )W(, )-17 in)w(i)(n)
-2' W- ( w 7 )1 Z

- (n)W(n)-(n) (n)W(n)-(n) -(n)W(n)Z(n)

n + Q, + 2Q2 - Q3 - 2Q4 " (29)

From the well-known normal theory and the assumptions made on model (1),

it follows that the conditional distribution of En given {X1, ""' X-n}

isX 2 (so the unconditional distribution of C is also x d Now we

proceed to estimate Q1 -Q 4 . First take Q1. Considering (6), we see that

the event
C n
cn 2

T= U {jeni - ZniI > (log n.)2/n i}
Tn i=1 I1

has a probability)O(n-2). Hence, with probability one, we can assert that

IVnil < (log ni) 2/ni ,  i - 1, ... cn  (30)

for n sufficiently large. Now, in case (30) is true.

cn cn cn

Q, n.V - lgn)/
Q 1= < ni n i niVni i (log n i n

i= Vi i=1=1 1 14n

Considering (5) and (6), we have (again in case (30) is trLe)

1/341 )4n-2/3-c 1  -1/3-2 1  4
Q1 < n (log n) = n (log n) (31)

which proves that

lim Q= 0, a.s. (32)

,*,~s*,p b *~ ~ %s*~* ~J .n- o
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Next come to Q2. By Schwartz inequality,

2 Cn
cn

QIZ< 'lI n.Z2  (33)2 - Q n)W(n)Z(n) - 1 ni

c But 2 2 c 2
But x n ni . Hence i ni niZ C = 0 (1), as n o. From this,i= nn cn

(5), and (31), we see that
3p*

Q2 0 , as n . (34)

In order to deal with Q3 we shall in the following use the symbol kn

to denote a quantity depending on il "*"' Xn, with the property that

snp kn < - with probability one. kn may assume different values in each

of its appearance. We also use the symbol I to denote an identity matrix

with appropriate order. Under these conventions, we have by (14) that

(n)W(n)-!(n) < knl/n (35)

for n sufficiently large. Therefore,
vWI/2wI/2x (knl/n YYin)W 1/2wl/ 2v

Q3( Vn)W(n) (n)-(n) -n n) (n) (n) (n)

<k ' 11/2 l c n  n i 7ng ) W1/2V .
-nVn)(n)i=l n-n-ni (n) (n)

By this, and using again (14), we have

< k ' W11 2 1 2  k Q(3
nV(n) (n) (n)V(n) = n1(

with probability one for n sufficiently large. By (32), we get

lim = 0, a.s. (37)

Finally we come to Q4. By Schwartz inequality,

24 -17jn (n) (n) ' (38)
Q4 Q3Zjn)W(n)!(n)(1 n)W(nJ7(n)'i) WnZ) " 38

a,
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Arguing as in the case of Q3 1 we have

Z' W X' -Ix < kZ' ,W. (39)
(n)W(n)-(n) ( 

-(n)W(n)-(n) -(n)W(n)Z(n)- n (n) (n)Z(n)

with probability one for n sufficiently large. From (36), (38), (39), we

have (again with probability one for n sufficiently large)

Q2 < k Q Z W (40)

In the process of dealing with Q2 , we have shown that the right hand side ,.

of (40) tends to zero in probability as n + =. Hence, with probability one,

P5-

Q4 0 O, as n =. (41)

5.

From (29), (32), (34), (37), (41), and the observation made on n' we

finally reach (13). Theorem 1 is proved.

'

ILI5

.5

5.

F-
is

%
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5. ESTIMATION OF THE VAPIANCE OF ERROR

2
our purpose, we need an estimator " which tends to a with a rate as

n

-(c n1/2)On

We shall consider sepa-ately the two cases that 10, d < 3, 20, d > 3.

For the first case, we cn'ose £1, C2 satisfying (2) and

£2 < (9EI + 1)/12 (42)

and define
c n n.

2 = j ( - Yni)2/(N - Cn) (43)On =ill jlni) Yn n n

For tre second case, we choose E1. £3 , such that

0 < < 1/3, 2(1 - e3)/d > - - (44)

-(1- 3)/dd

Define qn = n d Decompose Rd into a set in of supercubes having

the form (3), but zn in (3) is changed to qn" For each J e Jn' write the

elements in {P' "'' Xn} nJ as {7 (1), ... , Xnj(nj)}. The observations

of Y corresponding to these 7's is written as {YnJ(1), .... Ynj(nj)}-

Finally we define

2 JJ6n 2 l (n - 1) (45)on  ljnJl(YnJ(j) - Ynj) - In 45

nj

where Y = ZjlYnJ(J)/nj.

THEOREM 2. Under model (1) and suppose that H0 is true, then with

probability 1

V a 2) P o, as n =. (46)

~~~~ n % % * ~ ~ *~~'* * .* .-
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Proof. We shall only give the details for the case d < 3, as the

case d > 3 can be dealt with in an entirely similar way. Put b ni(j) =

( (J) - T n)'a, then lb iJ)l <I Va'Ijall n . From (18), we have

ni  n.i1 - ),~ 2 = l en2
I (Yni() - Yn I (j) - e )2(47)

j=i ni ni j=1 nij) ni

ni  ni
+ b 2 (j) + 2 1 bn(J)(e (j) - en)

j=1 ni j=1 i n

Put N' = N - C In view of (5), in order to prove (46), it is enoughn n n

to verify the following assertions (all with probability one).

0 l1/6-E:1 /2 p, C n n i  22

1. n T /N" -- 0, where T = I (e 0)
n n n1 i=1 j=1 ni

1/6- 1/2 C n 2 P*

2 n. n i nieni/N'n ---n O.

0 1/6-c I/2 Cn i 23. n X Y b2 .(j)/Nn  0.

i=1 j=1 ni n

p, 1/6-c 1/2C n 1

40.  Sn 0 0, where Sn = n b ni.(j)(e ni(j) e e )/Nn .=1=" e n

Under model (1), T is a sum of N iid. random variables with zeronn2/3+c, 2/3+c 1n ' n-ln

mean and finite variance v. By (6), we have N' > n 1 

Hence (with probability one)

P*(I n  Tn/Nnl > C) < P*(IT I > E 1 < 4 3EI4 0.

E

2 2This proves 10. For 20, notice that E(nien) = a2, hence

1/6-Ei/2 C n I/6-Ei/2 -5E 121~ ni1E*(n 12 nie n i/Nn ) < n cn/N n' < 2n 12 0

l- n/



N~q W~XUXMZKNR q~ ' -J ,5 ~..F ~ ~7~'TWUUU. UVW W W WW 4T rd - Mi. 52' ILJM.Svvu M ri~ 1inrrW VV-VU V If'T u-.w - Y -.7-1 -T 'r% W

16

2 2

This proves 10. For 20, notice that E(nie 2 ) = hence
1nl

E*(n 1 n e 2/N n ) < n C /N' < 2n - 0:1 - ni n -

and 20 follows. 30 is proved by noticing that N'IN n- 1, andn n

16-cI/2 Cn n i 2  N n 2 2l/6" 1/2
n b (j/n < dIBJZn

9 i=1 j=i Nn

N 1 2n .(2/3-2E2) + (I/6-ci/2)n dIIJ 2n-2
n

under the condition 0 < cI < 1/3, 0 < c2 < (9E1 + 1)/12 and d < 3, we

have -(2/3 - 2E 2 )/d + (1/6 - E1/2) < 0. Therefore, the right hand side

tends to zero as n co .
c C

Finally we come to 40. Since the sum Ji=1 Yj1dni (j)(e ni(j) - e ni) can be

c n.
written in a form jii jldni(J)eni(J) with Idni(J)j _ bn(j)[, it follows that

cn n.1/3- 1  2 2 2
Var*(S ) < n I I b (j) /N' .

n '-i1 j=1 ni n

It is easy to see that the right hand side is less than a constant g n which

does not depend on X1 ""'.Xn' and gn - 0 as n =. Also, E*(Sn) = 0.

Therefore,

E*S2 = Var*S + (E*(S ))2
n n n

< gn - 0,

from which 40 follows, and Theorem 2 is proved.

A more tedious argument allows us to prove that

lim A'r(0 2  a 2) 0, a.s.
n n

I

- * V[m,~V % * *..% .:.-~*~ - '' ~ '. .
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6. A LARGE SAMPLE DETERMINATION OF C IN TEST (12)

We are now in a position to prove the following theorem, which gives

a large sample determination of C in test (12).

THEOREM 3. Under model (1) and suppose that the null hypothesis H0

is true, the distribution of the statistic

n =  2RSS 2(Cn " d)

converges to the standard normal N(0,1) as n -.

Pt-oof. From Theorem 1 it follows that the conditional distribution

of Tn v RSSn/a2 - (c7n -d) given {71,7 2 ' ""} tends to N(0,1), with

probability one. Since Ion - ol2 I 2 2 we have

n n ,

n j2RSS nlo I 2 -C

- T*I = 1  (48)n n n n% n%

By Theorem 1, with probability one RSS n/Cn = Op(1). Therefore, from (48)
and Theorem 2, we have n T* P*

a - 0 O, with probability one. Hence we havenn

proved that with probability one, the conditional distribution of T* givenn

{Xi' 2 ""} tends to N(0,1), as n , and the same holds true for the

unconditional distribution of T*. Theorem 3 is proved.

From Theorem 3 it follows that if we choose

C = {V2(c n  d) + u }2/2 (49)

in (12), where u is defined by . t d 1 -a, then the test

is asymptotically similar with size a.

o 

f 

-W
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7. CONSISTENCY OF THE TEST

Denote by Qn(F) the power of the test defined by (12) and (49), where

F is the joint distribution of (7,Y). The following theorem shows that

this test is consistent over a wide class of alternatives.

THEOREM 4. Suppose that the following conditions are satisfied:

10. EI171 2 < -, COV(2) > 0 EY2 < 0.

20. The distribution of X has no singular component.

3° . The closure A of the set A of all atoms of X possesses Lebesgue

measure zero.

4° . The closure A2 of all discontinuity points of m(x) = E(YIX = X)

possesses Lebesgue measure zero.

5'. P(Y < yj7 = x) depends only on y - m(x).

60. There exists no linear function a + 'x such that

P(m(7) : + a'7) = 1.

Then, denoting the distribution of (7,Y) by F, we have

lim Qn(F) = 1. (50)
n-p:

Poo5f. First choose d+2 points t1, ..., td+21 such that the points

'm(tl)) ..., d+2' m(td+2)) (51)

Rd+1
do not lie on a common hyperplane in R . If X possesses no absolute

continuous component, then, by conditions 10 and 60, we can choose such

points t1 , ..., td+2 from the atom set A. If X has an absolute continuous

component with density f, then, according to conditions 10, 30, 40, 60, we

can choose t1, ... , td+2 from the set Rd - (-1 UA 2.. With the additional
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property that there exists two constants hI > 0, h2 > 0, such that for any

I = {(x (I )  x(d)): b < x i  < b. + h, i = 1, ..., d} with h e (0,hl),

we have

fi fdx > h2hd (52)

For large n, we can find d+2 distinct supercubes Jn1' ""' Jn,d+2 in

j* (see (3)), such that t ni' i = ... , d+2. Denote the elements ofn 1

{X 1, "'" - lJni byX i(j), j = 1, ..., ni. In the same way as we did

in Section 2, we define Y ni(J) ,  i' Yni" Fit a hyperplane

y Om + n x

to the d+2 points (Xi' Yni) ' i = 1, ... , d+2, by the weighted least squares .

method with weights n 1  n. d+2* The weighted residual sum of squares is

R .d2n )2_
n i= (Yni " cn - Bni

For definiteness, we assume that the points tl, ... , td+2 are chosen from

the set R - (AIU A2 ). In this case, from (52) and the fact that kn
-(1/3- 2 )d

n With probability one we have

n > h 2/3+22, i = I, ..., d+2 (53)

for n sufficiently large.

Given 6 > 0, we can find n0 such that for n > n0

sup{m(x): xeJni } - inf{m(x): xeJ < 6 2, i 1 , d+2. (54)

Use again P* = P*(71, 2' " '') the conditional probability distribution

given X112' . . . . By (53), (54), it is easy to see that

2 -1 2 "2/3-E2
P*(IY - m(t.)I > 6I) < 61 2h 2  n , i , ... , d+2 (55)

n.- - -..w ,.-. V- • , - .- a
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with probability one for n sufficiently large.

Since the points (51) do not lie simultaneously on any hyperplane,

and since Tni - ti' i = 1, ..., d+2, as n - -, it follows that there

exists constant 62 > 0 not depending on n and (7i,Yi), i = 1, 2,

such that

sup{Im(t i) - an _-XniI: i = 1, ... , d+2} > 62

for n sufficiently large. Choose 61 = 62/2 in (54), Then if the inequal-

ities IYni - m(ti) I < 6, all hold true, we shall have

Rn > 6 minfn, ..., nd+2 } (56)

for n sufficiently large. Summing up all the arguments above, we reach

the following conclusion:

lim P(Rn > n
213 ) = 1. (57)n-n

Obviously, we have RSS > R * Hence by (57)

lim P(RSS n > n
2/3 ) = 1. (58)

n-).w

Now 2
Now consider an defined by (45). The equality (47) still holds if

n
we rdefne bwit.m m(Tn (j) )/n Wewereein ni(J) = m(Xni(j)) - mni , wtmni = j=I -i 1n

have

cnn. c n.n n m nbn2i(J)/Nn < m2(X (j))/Nn < Y m 2( )/Nn (59)

i=1 j=1 i i j=1 i=1 -

It can be shown that there exists constant q > 0, such that with probabil-

ity one we have

N > qn (60)n -
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for n sufficiently large (see the end of this section). From (59), (60),

using the strong law of large numbers, we get

c n. b2  /N 2 q 1 2"

lim sup 2 i(J)/N < q-1 E(m2 ()) < qIE(Y ) < , a.s. (61)
n-- i=1 j=1

Employing the method of handling Sn in the proof of Theorem 2, we get

c n  n i  c n  n i  '

P*([ij l bn (j)(e n (j) - e n)I/N > C) < C2 Nn2 a 2 b2 (j)
i=1 =1 n nii=1 j=

Cn n i n
2 2  2 2 2-2 2 i .<- N a m (_Xni(J)) < e N O, aNs (62)a m.i
n i=1 _=1 i:"

Finally, we have

c n  n
n 2 P*
I (eni(j) - eni /N - 0. (63)

i=1 j=1

Combining (61)-(63), we see that there exists constant M < , such that

lim P(a2 < M) 1 1. (64)nn-o

From (58), (64), it follows that

lim P(RSS /a 2 > n2/ 3M4 ) = 1. (65)n n

But by (5), we have
C <(2(c - d) + U )2 < 8c < 8n1/3 < M-1n2/3

V2cn n ) C

for n sufficiently large. This means

lim P(RSSn/a2 > C) =1
n ..-.o : 4.

J.
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which is no other than (50), and the theorem is proved.

Proof of (60). If X has at least one atom, then clearly (60) holds.

Otherwise we choose a sufficiently large such that

fdx > 1/2, I = {(x) x(d) Ix a i = 1 d

I~ ~ cotis(ad 1 / 3 -c 2

I contains (2a) n elements of J*. Put

H = {J: JdJ*, J I, p(J) > 4-1 (2a)-d n 2)

n n _ (a

Evidently we have

> 1/4. (66)
JeH n

dn1/3-E2
Using (16), and noticing that Hn has at most (2a) n members, we

obtain

p(J~ > -1(2a -(I/3- 2 ) ,

P(I#(J)/n - P(J)f > 8-(2a -dn , for at least one J e Hn)

d 1/3- 2  1/3+2 2

(2a) n 2 exp(-cn ) = O(n- ) (67)

where c > 0 does not depend on n. From (67) we see that, with probability

one, we have

1 d- (113-c 2 )

I#(J)/n - p(J)l < 8- (2a) - dn, for all J e Hn  (68)

for n sufficiently large. But when (68) holds we shall have

N > #(J) >n~ dGH n (d) - 8 (2a) -d n - 2

JGH n
n

>n~aH ni(a) > n/8
S. n

on account of the fact that e2 > I and (66). This shows (60) holds with

q =1/8.
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8. ASYMPTOTIC POWER OF THE TEST

Suppose that (7,y(1)), (2,y(2)), ... is a sequence of alternatives,

where mn)(x) 4- E(Y(n)IX = x) approaches some linear function a + B'x as

the sample size n increases. Specifically we assume that

m(n) (x) = + B'x + mO(x)/g n  (69)

where gn - as n . We are interested in finding such gn for which

Qn (F(n)) tends to some limit greater than the size % and smaller than

one (F(n) is the distribution of (7,Y(n))).

THEOREM 5. Suppose that (71,Y1 ), ... , (Xn,Yn ) are iid. samples of

where Y = m(n) ( i) + ei  i = 1 , n, m(n)(x) is defined by

(69) and i, ei, i = 1, ..., n satisfy the conditions specified in model

(1). Also, assume that EM0 (T) < G, and

lim gn/(rn c-1/4) h"1 e (0,-). (70)

Define

min E[mo - - B 2  (71)

Then we have

(F(n)) t2/2

=lur Q ( e dt. (72)
n-w V 9

PrOOf. As the detailed proof is tedious, we give only a sketch of

the main points of the proof.

1. Since the linear hypothesis H0 is not assumed to be true, the

residual sum of squares RSS (9) cannot be reduced to (11). Under thisn

circumstance, instead of (27), we have to use a strong approximation to Yni
ni6
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P(lY ni "Z*nil > (log ni ni) 2 < K exp(- x(log ni) 2), i = I, ..., cn
* -N 2/n ) wt

where Zni (u 2 /n.), with

c
n= + 'Xni + -jn m(i_ l(j))/(nign).

2. Put Z * - a - X . It is easy to verify that the expres-2 PuZni ni --ni,

sion (29) still holds true with Zni so defined.

3. We have to verify that (32), (34), (37) and (41) still holds true

in the present case. For Q1, nothing has been changed and (31) is true.

For Q2 , notice that (n)W(n)Z(n)IO obeys a non-central x distribution

with degree of freedom c n and non-central parameter

c n 
n2 g 2  (jn o, ij)n

.2 -2 2
It is easily seen that as n -, n -= ngn [Em0 M + o(•)I. Since we have
-2 = 0(C~n) in view of (70), by (5), we have

ngn n

E(Zjn)W (n)Z(N)) = O(Cn ) = O(n ) (73)

and (34) follows from (31) and (73). Q3 and Q4 can be dealt with in the

same manner.

4. Given T 7 2 the conditional distribution of n/a2 is

x 2' whereC ,6

cn n

62 ngn2ICn L - I ( - - ln))( Tni - iIn n ! nVni i=1 n v niX-In '  = i) n-ni'7n)(X -7 )- nX

where
n.

vni = ( J))/n - m, 0 = Emo(7).

From (14) and (70), it is easily seen
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62n : vn{Var(m ()) - E[(mo(7)- mo)7']V'IE[(mo(7) - Mo)X] + o(1)}h2

= vZ-{min E(m0()- - 7 )2 + o(1)}h2 " (74)

Given {7I, X .12 the conditional distribution of E la2 is the same as

-2' n
the sum of iid. variables (ni + 6n//E-n) 2 , i = 1, ... , cn , where n n

are iid., nI - N(0,1). The central limit theorem can be applied to this

case. which gives

E /a2_ (c + 62)n-n-n N(0,1). (75)
2cn + 46

5. Define a2 as in (45). We have to verify that (46) still holdsn

true in the present case. Starting from (47), in which b ni(j) is redefined

as

b (J) = (X (j) - X )' + gn u n(j)ni -ni -ni n ni
n.

Uni(j) = mo(Xn(j)) _jilmo(Xi(J))/n i )

it is easily seen that the first and third term in the right hand side of

(47) can be handled in the same way as before, and it suffices to verify

that

cn ni
b (j)/n= o(/cn). (76)

i=1 j=l ni 
1

Considering (46), (75) reduces to

2 c n  n i 2

gn il Uni(J)/n = o( n (77)



~A LMT'1W L 74 . ~ LUF~ ILP W i9 -JVP? J!P.Fl7rlF d - ~ W 5 P.'. W V 'P. . Fj PW 'V ' P' VV W V l 1 Pj V W~V1J P.*-1r~lJ W V Ina 1'~x~r W. -L r .. ' Wv q

26

Since
Cn ni Cn n n

IlUni (J)/n < m 0(Xni (J))/n <  mO(Ti)/n E(m 0(X)), a.s.

i=1 j=1 i=1 j=1 i=1

Further, by (5) and (70), we have

-2 1 2 n -5/6
<-2hn rgn - Vc nn

for n sufficiently large. This proves (77).

6. From (45) and (75), we have

E /2 (c + 62)
n n n n - -- N ( 0 ,1 )

J2Cn+ 46n n

as n -, under the conditional distribution given { 29, 2 " . From

(49), (74), we have

(/2(cn -d)
2 + u )212 - (c + 62

lim 0=- .

/2c + 462nn

This leads to (72), concluding the proof of the theorem.

The statistical meaning of the quantity 2 is clear, since

min E[mo(X) - a - _'X] measures the distance of mo(T) to linearity in

the MSE sense. As this distance increases, 2 decreases, and the asymptotic

power of the test (right hand side of (72y) increases.

The theorem indicates that, roughly speaking, our test has a dis-

crimination power for those Y, for which the distance (in the sense of

MSE) of E(Y17 = x) to the linear function space is not smaller than

-1/2 1/4 1/3-: 2O(n c ). Under quite general conditions, we can prove that cn  Cnn-1/2 "5/12- 2/4

and O(n 11  4) = O(n . In principle, E2 can be chosen arbitrarily

near 1/3. So the order for possible discrimination can be made arbitrarily
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near O(n-1 12), but this order cannot be reached, unless X is purely atomic

with a finite number of atoms.

N 26
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